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ABSTRACT

The purpose of the study is to analyse the growth processes, as well as the relationship between size

and growth, in large Finnish firms in 1987–1995. The study concentrates on stochastic growth models

and on the test of Gibrat’s law of proportionate effect. This law assumes that growth is a random

process and independent of the size of the firm. If Gibrat’s law holds, there is no optimum size for the

firm with respect to growth. Several modifications of Gibrat’s law are briefly discussed to form a basis

for the empirical study. The data are taken from the ETLA data base including financial statements

from the 500 largest firms in Finland. Due to the restrictions set on the stationarity of the data, only

157 firms out of 500 are accepted for the sample. The size of the firm is measured by nominal net

sales. Markov transition matrices and regression analysis are used as the main methods of testing Gi-

brat’s law. The concentration of the size distribution is analysed by the Hirschman-Herfindahl index,

Gini coefficient, and concentration ratios. The empirical results show that there are no changes in

concentration in the research period in spite of the radical changes in business cycles. There are no
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large differences in growth distribution between size classes. However, in the largest size class the

growth seems to be slower than in smaller classes. Moreover, the firms in the smallest size class tend

to grow rather fast. These two phenomena contradict with Gibrat’s law and may have caused the

concentration to stay stable over time. A negative relationship is observed between the growth and

size. There is also a statistically significant negative relationship between the four-year growth rates.

Thus, also the results on the persistence of growth violate Gibrat’s law.

Key words: Gibrat’s law – stochastic growth processes – large firms – concentration

1. INTRODUCTION

There is a universal tendency for economic variables to be distributed according to positively

skewed distributions. This also holds for the size distributions of business firms (for the classic

study see Hart and Prais 1956). The form of the size distribution refers to the concentration of

economic activity and is based on the growth processes going on in the firms. Therefore, it

can be said that concentration and growth are the static and dynamic expression of the same

very important economic phenomenon. This means that if we want to develop an explanation

for concentration in economics, we must analyse the growth processes in business firms. There

are several different classes of growth theories used to explain concentration in economics

(see Evans 1987 and Sapienza et al. 1997). First, many of the growth models are based in

some way on Gibrat’s law of proportionate effect, according to which growth is stochastic and

thus independent of the size of the firm. For example, Simon and Bonini (1958) assume that

Gibrat’s law holds for firms above the minimum efficient size level. Lucas (1978) presented an

influential model of the size distribution of firms that assumes Gibrat’s law in order to prove

the existence and uniqueness of an equilibrium. The model presented by Lucas in 1967 on

capital adjustment implies that the time series of firm employment, capital, and output con-

forms to Gibrat’s law (see Lucas 1967). Jovanovic (1982) developed special cases of his model

of firm learning in which the law holds at the limit for mature firms or for firms entered the

industry at the same time.

Second, there are a number of growth models conceptualizing the growth of the firm as a

sequence of progressive stages (Sapienza et al 1997). In these models, firms are expected to go

through some sequence of stages (see Greiner 1972, Churchill and Lewis 1982, Kazanjian 1988,

and Kazanjian and Drazin 1990). For example, Greiner (1972) introduced a general growth

model based on five stages of growth and links the speed of growth to the industry’s growth

rate and its level of profitability. Churchill and Lewis (1982) focused on the early stages after

foundation and considered also periods of nongrowth perceived as disengagement or failure.

Later Scott and Bruce (1987) linked this framework to managerial, organizational, and indus-
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try issues. In the Kazanjian (1988) model each stage of growth is associated with dominant

problems facing the firm arising from scaling up production and building sales capacity to

gain market share. Third, the resource-based models of firm growth emphasize the role of re-

sources as the ultimate determinant of profit generation potential (see Sapienza et al. 1997).

For example, in the Penrose (1959) model the growth is stimulated by the need to exploit the

resources of the firm maximally. Garnsey (1996) builds his model directly on the Penrosian

theory adding new insight by drawing on systems thinking.

The growth model classes roughly outlined above differ strongly from each other. The

earliest of the stochastic theories are very useful in that they are only dealing with size and

growth using stochastic growth processes to explain the size distribution. Therefore they are

very handy in empirical research and require only a few variables to be estimated and tested.

For these reasons, the present paper concentrates on growth as a stochastic process and large-

ly rests on the test of Gibrat’s law. There is also some previous empirical evidence on these

matters (see Evans 1987). For example, the studies of large firms by Kumar (1985), Evans (1986),

and Hall (1987) found that Gibrat’s law fails for several different measures of firm size so that

firm growth decreased with firm size. In Finland, Hajba (1978) analysed the growth of the 400

largest firms in the years 1968–1973. She also found a negative relationship between size and

growth although the coefficients of multiple determination in her regression equations were

low supporting the stochasticity of growth. When size was measured by net sales, the average

coefficient of multiple determination was 15.2% (Hajba 1978: 176). Neilimo and Pekkanen

(1996) analysed the growth of nine large companies in the years 1986–1993. They showed

that in most cases the growth rates of firms were stable, which conforms to the hypothesis that

the growth rate is rather independent of the size of the firm.

The purpose of the study is to analyse the growth process, as well as the relationship

between size and growth, in large Finnish firms in 1987–1995. This time period is very inter-

esting because of radical changes in business cycles. Table 1 presents some statistics to dem-

onstrate the environment faced by Finnish companies during the research period. This table

shows that after rapid expansion of economic activity during 1987–1990, a deep depression

started in 1991. For example, in construction the volume of production in the years 1993–95

was only 64–65% of the level in 1990. The number of unemployed rose from 88 000 in 1990

to 456 000 in 1994. The number of bankruptcies more than doubled during 1990–1992. The

Helibor interest rate rose from 10 percent in 1987 to 14.0 percent in 1990 and again declined

to 5.8 percent in 1995. Total investments were about FIM 139 billion in 1990 but declined

rapidly and were only FIM 83 billion in 1995. Therefore, the research period is very interest-

ing from the viewpoint of concentration and growth of business companies. Did the radical

changes in the economy affect the growth process in large firms? Under these special circum-
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stances, did Gibrat’s law hold? What happened to the rate of concentration of size distribution

due to the growth of firms? These are questions to be answered in this study. The paper is

organized as follows. The background of the study was presented in the first introductory sec-

tion. The second section summarizes the main stochastic processes based on Gibrat’s law. The

data and methods are presented in the third section and the fourth section includes the empir-

ical results on size concentration and growth. Finally, the last section summarizes the main

findings of the study.

2. STOCHASTIC GROWTH MODELS BASED ON GIBRAT’S LAW

Gibrat based his law of proportionate effect initially on Laplace’s law of constant effect, which

can be applied only to symmetrical size distributions (Gibrat 1931: 62–90). The law of propor-

tionate effect can be expressed by the fact that the logarithms of the size variable are distrib-

uted by the law of constant effect. The stochastic process of Gibrat’s law is presented general-

TABLE 1. Economic environment of Finnish business companies in 1987–1995

Panel 1. Economic time series (source: Statistical Yearbook of Finland 1996)

Year:

Time series: 1987 1988 1989 1990 1991 1992 1993 1994 1995

Index of wage and salary
earnings (1985=100) 114.5 124.8 135.8 148.3 157.7 160.7 161.9 165.1 172.8
Gross domestic product at 1990
prices, billions of FIM 246.2 258.8 269.9 269.8 260.0 247.4 240.2 244.8 254.1
Investments at current prices,
billions of FIM 92.5 109.3 136.1 139.1 110.1 88.0 71.2 74.2 83.3
Helibor interest rate (3 months) 10.0 10.0 12.5 14.0 13.1 13.2 7.7 5.3 5.8
Employed, thousands 2423 2431 2470 2467 2340 2170 2041 2024 2068
Unemployed, thousands 130 116 89 88 193 328 444 456 430
Unemployment rate, % 5.1 4.5 3.5 3.4 7.6 13.1 17.9 18.4 17.2
Bankruptcy petitions filed 2816 2547 2717 3588 6253 7355 6768 5502 4654

Panel 2. Volume index of production (1990=100) by industries (source: Domestic Databases of ETLA)

1987 1988 1989 1990 1991 1992 1993 1994 1995

Industry 93.0 96.8 100.7 100 89.1 90.9 95.8 107.8 118.3
Construction 82.2 89.7 102.4 100 88.4 75.2 64.4 63.1 65.5
Wholesale and retail trade 89.8 94.9 102.7 100 86.8 75.8 71.5 75.3 77.9
Hotels and restaurants 87.8 91.9 97.7 100 92.1 85.2 81.1 84.7 85.4
Transportation (*) 81.0 86.1 94.3 100 96.3 96.2 98.6 103 107

* Source: Statistics Finland: National Accounts
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ly as a random walk process which takes place on a logarithmic scale (see for example Kalecki

1945). In a process of growth the law of proportionate effect means that equal proportionate

increments have the same chance of occurring in a given time-interval whatever size happens

to have been reached, that is growth in proportion to size is a random variable with a given

distribution which is considered constant in time. In the growth process of firms Gibrat’s sto-

chastic law means that the logarithm of the size results from the addition of many small ran-

dom variables having identical distributions with mean u and variance q2 to the logarithm of

the original size. By the central limit theory the logarithmic size is asymptotically normally

distributed with mean n·u and variance n·q2 , where n is the number of periods. Thus the size

distribution of firms at time n will be approximately lognormal.

The general lognormal distribution law means that the logarithm of size is distributed ac-

cording to the normal distribution. In the case of lognormal distribution the variance of loga-

rithmic size can be expressed as follows:

(1) q2 = log[1 + (v2 / m2)]

where v is the standard deviation of size and m the mean size. The expression (1) shows that

the variance of logarithmic size will increase whenever the coefficient of variation of the size

increases. Kalecki (1945), for example, uses the variance of logarithmic size as a measure of

concentration. Since Gibrat’s law assumes that the variance of logarithmic size is increasing

all the time with the number of periods of growth, it assumes that concentration in the size

distribution increases continuously. Summarizing, the appearing of the law of proportionate

effect in the growth process means the following. First, there is no optimum size for the firm,

that is, growth is a stochastic process. Second, there is no serial correlation in growth rates,

that is, there is no continuity in the growth pattern. Third, the distribution of size tends asymp-

totically to the lognormal distribution and the variance of logarithmic size increases con-

tinuously.

In the firm populations where the concentration rate is very high it seems to be reasona-

ble to expect that the rate will no longer increase because of the diseconomies of high con-

centration and the ensuing restricted growth process in the largest firms. In that kind of situa-

tion it is possible to apply Kalecki’s random walk model (Kalecki 1945), where the variance of

the logarithmic size remains constant in spite of random growth, to explain the concentration

process. In this stochastic model a negative linear correlation between the logarithm of ran-

dom increment and the logarithm of size is assumed to hold instead of the independence as-

sumption of Gibrat’s stochastic process. However, the other assumptions of Kalecki’s model

are identical with those in Gibrat’s law.

Champernowne (1953) has presented a stochastic Markov chain model that leads accord-
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ing to its ergodic feature to the steady state distribution conforming to the exact Pareto distri-

bution. The Pareto distribution is defined as follows

(2) Q(x) = c x –p x > 0, c > 0, p > 0

where p is the Pareto coefficient, c a constant, and Q(x) the function which gives the number

of the firms whose size is greater than x. If the Pareto coefficient is close to unity, the size

distribution conforms to the rank-size rule. In Champernowne’s process Gibrat’s law of pro-

portionate effect is valid, but as a stability condition to offset the tendency for diffusion, he

assumes that the mathematical expectation of the random steps in the transition matrix of peri-

odic size is negative.

The assumption of the negative expectation is suitable for populations of impedent growth,

but in fact Champernowne presented his stochastic process to explain the genesis of the Pare-

to tail of income distribution, that is, it is valid only above a lower limit of size. In that case

the Pareto distribution function can be presented in the following form

(3) F(x) = 1 – (x0 / x) p x > x0

where x0 is the lower limit of size. The differentation of function (3) with respect to x leads to

the following Pareto density function

(4) f(x) = (p / x0) (x0 / x) p+1

This function is a monotonically decreasing function of x, that is, the lower limit of size is the

mode of the distribution.

The Pareto coefficient is often used as a measure of inequality, that is, relative concentra-

tion. Similar to the variance of the logarithmic size, the Pareto coefficient is in a close rela-

tionship with the coefficient of variation. If the Pareto coefficient is greater than 2, that is, if

the distribution has a finite standard deviation, the following relationships hold between the

arithmetic mean, the variance of size, and the Pareto coefficient

(5a) m = p/(p–1)

(5b) v2 = p/[(p–2) (p–1)2]

The solution of the set of equations (5) makes it possible to present the Pareto coefficient in

the following form

(6) p = 1 + [1 + m2 / v2] 0.5

which is comparable to (1). Thus, the Pareto coefficient of the size distribution decreases when

the coefficient of variation of the distribution increases.
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The stochastic processes roughly outlined above are all stationary and do not include the

birth-and-death process of firms. Because the empirical part of this study does not include the

birth-and-death process, the idea of the nonstationary models is only shortly reviewed. Most

of the birth-and-death processes based on Gibrat’s law generate as the result of the growth

process a skewed distribution, which conforms only in the tail to the Pareto distribution. Si-

mon (1955) calls this kind of family of skewed distributions the Yule distributions. The tail of

these distributions conforms to the following function

(7) f(x) = (a / xk ) b x

where a, b, and k are constants. Simon argues that b is so close to unity that in the first approx-

imation the final factor has a significant effect on f(x) only for very large values of x. He also

says that the exponent k is greater than unity but smaller than 2. Simon presented a stochastic

model that jointly by Gibrat’s law and an assumed birth process generated the Yule distribu-

tion (7). Simon assumes that there is a constant birth rate of new firms in the smallest size

class. Simon and Bonini (1958) argued that lognormality is only a special case of the Yule

distribution which appears when the birth-and-death process has not been considered. Ijiri

and Simon (1977) presented a modification of Simon’s model in which serial correlation be-

tween the periodic growth rates is allowed. They showed by Monte Carlo simulations that also

this modification will generate a Yule type of distribution, although a perfect steady state was

not reached.

The short discussion of the models above can be summarized as follows. If the growth of

firms is stationary and does not include the birth-and-death process, Gibrat’s law generates a

lognormal distribution and the variance of logarithmic size will continuously increase over

time (pure Gibrat’s law). However, if there is a linear negative dependence between the loga-

rithms of growth and size, Gibrat’s law will generate a lognormal distributíon but with a con-

stant variance of logarithmic size (Kalecki’s model). If the mathematical expectation of incre-

ments in the stochastic transition matrix is negative, Gibrat’s law generates a Pareto distribu-

tion (Champernowne’s model). The incorporation of the birth-and-death process to Gibrat’s

law leads to a Yule distribution when there is a constant rate of birth (Simon’s model) or serial

correlation between periodic growth rates (Ijiri-Simon’s model).

3. THE DATA AND METHODS OF THE STUDY

The empirical data for the present study have been taken from the ETLA data base including

financial statements from the 500 largest firms in Finland. However, we set two restrictions for

the choice of the firms to the empirical study. First, while the research period covers the years
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1987–1995, it was required that the financial statements for the firm to be chosen were also

available for the whole period. Second, all the firms that were involved in large mergers dur-

ing the years 1987–1995, were excluded from the sample. The first restriction was set because

we wanted to keep the growth process stationary in the way that the observations (firms) in

each year were the same. For the sake of this restriction the results of different years are strictly

comparable to each other. The second restriction of the exclusion of mergers is based on the

aim to focus on the internal growth processes, thus excluding external growth. When consid-

ering the stochastic processes based on Gibrat’s law, it is reasonable to concentrate on inter-

nal growth only. The restrictions meant that only 157 firms out of 500 were accepted for the

sample.

For simplicity, the research period was split into only two sub-periods, 1987–1991 and

1991–1995 so that four-year growth rates are considered as such and also as transformed to

annual equivalents. For the same reason only one measure of size, nominal net sales, is con-

sidered. Net sales is a reliable indicator of economic activity, and is, as a flow variable, more

sensitive to stochastic changes than a stock variable (for example, total assets). Net sales was

used instead of value added because the latter obtained a number of negative values in the

data. Table 2 shows the industrial classification and the size of the 157 sample firms. The

distribution of the firms among industries is very diversified. Wholesaling, retailing, as well as

food, metal, and multi-industries have the highest frequencies in the sample. The median size

measured by net sales in 1987 is about FIM 450 million and in 1995 about FIM 670 million.

Thefore, the typical firm in the sample is middle-sized according to Finnish standards. Howev-

er, besides the large firms at the top of the size distribution, the sample also includes firms

with net sales only a bit over FIM 100 million. To summarize, the data consist of large and

middle-sized Finnish firms with a high variety in size. Note that the large difference between

the mean and the median values in Table 2 implicitly refers to a very skewed size distribution,

and, at the same time, to a high rate of concentration.

The size distribution of net sales is analysed in this study in several different ways. First,

the frequency distributions of size are presented. Second, a set of familiar statistical measures

of distribution (mean, standard deviation, skewness, and kurtosis) are calculated for both the

net sales and the logarithmic net sales distribution. Third, the compatibility of the size distri-

butions with normal, lognormal, and Pareto distributions are evaluated. The normality and

lognormality of the distributions are tested by the Jarque-Bera test statistic (see Jarque-Bera

1980). The Pareto law is tested as follows. The Pareto coefficient is calculated on the basis of

equation (6) by size class, using arithmetic mean and standard deviation of the tail. If the Pare-

to law is valid for a certain lower limit of size, the coefficients will be identical in each class

upwards. Therefore, the stability of the coefficient gives us a simple test of the existence of a
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Pareto tail. Third, three kinds of concentration measures are used, that is, concentration ratios,

the Hirschman-Herfindahl index, and the Gini coefficient, to evaluate the concentration of net

sales from different perspectives (for the measures see Bailey and Boyle 1971, Hall and Tide-

mann 1967, Kilpatric 1967, and Marfels 1971). These measures are briefly reviewed in the

following text.

The most popular measure of concentration may be the concentration ratio, which here

measures the relative share of net sales for the m largest firms. Therefore the mth ratio of con-

centration is defined as

m
(8) Crm = Σ Pi

i=1

TABLE 2. Industry and and size of sample companies

Panel 1. Industrial classification

Industry: Percent: Frequency:

Industry:
Food manufacturing 12.1 19
Metal industry 11.5 18
Forest industry 3.2 5
Electronic industry 7.0 11
Chemical industry 3.2 5
Graphic industry 9.6 15
Multi-industry 10.8 17
Other 2.5 4

Service 4.4 7
Construction 5.7 9
Transportation 1.9 3
Energy production 1.9 3
Wholesaling 14.0 22
Retailing 12.1 19

TOTAL 100.0 157

Panel 2. Net sales in the years 1987, 1991 and 1995 (in millions of FIM)

Statistic: 1987 1991 1995

Mean 1576.668 2257.433 2539.883
95% percentile 7968 10599 12108
Upper quartile 1035 1548 1739
Median 452 621 672
Lower quartile 223 312 329
5% percentile 126 183 180
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where Pi is the share of net sales for the ith largest firm. This ratio is very handy but is only

based on one point of the size distribution. The rest of the measures are based on the whole

distribution.

The use of the Hirschman-Herfindahl index (H-index) as a measure of concentration is

supported by several researchers (see for example Marfels 1971). This index can be presented

in the following way

n
(9) H = Σ Pi

2

i=1

where n is the number of firms in the population. Because of the squared form of the measure,

it gives less weight to the firm, the smaller the size. The higher H is, the higher the rate of

concentration.

The Gini coefficient is based on the Lorenz curve of the size distribution. Statistically the

Lorenz curve presents the relationship between the distribution function and the first-moment

distribution function. The Gini coefficient is the ratio of the area between the Lorenz curve

and the diagonal line to the area of the triangle under the diagonal line. Technically the Gini

coefficient can be presented as

(10) G = 1 – 2 L

where L is the area under the Lorenz curve. The values of the coefficient vary from zero (equal

distribution) to unity (perfect concentration). Note that actually G is a measure of inequality.

This means that it is independent of the number of firms and is, in that sense, unaffected by an

important factor of population structure. In this study this feature does not, however, affect the

comparability of the results because the number of firms is kept constant over time.

Gibrat’s law will be tested in several ways analysing the growth process of the firms. First,

Markov transition probability matrices are calculated using a logarithmic scale for the size. If

Gibrat’s law holds, the probability distributions should be identical in each row of the matri-

ces. These matrices also give an indication of the negative expectation of growth. Second, the

statistical distributions of growth are evaluated by size class to check the same things. Third,

the relationship between size and growth will be analysed by the regression analysis. Let us

present the relationship between the size in period t and the size in period t–1 as follows

(11) x(t) = a x(t–1)b

where a and b are constants. When dividing both sides of (11) by x(t–1) we get

(12) x(t) / x(t–1) = 1+g = a x(t–1)(b–1)
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where g is the growth rate. If Gibrat’s law holds and the growth distribution is identical with

respect to size, the constant b does not significantly differ from unity. If, however, the constant

b is greater (less) than unity, the growth rate is an increasing (decreasing) function of size. The

constant b is in this study calculated by taking logarithms of both sides of (11) and applying

regression analysis (OLS). The normality of error terms is tested by the Jarque-Bera statistic,

which is also used in the regression analyses below.

Fourth, the assumption of a negative linear relationship between the logarithm of growth,

i.e. log(1+g) or log(x(t)/x(t–1)), and the logarithm of size, or log x(t–1), is also explicitly evalu-

ated by the Pearson correlation coefficient. Implicitly, this is equivalent to testing the hypothe-

sis b=1 in the regression (12) above. Fifth, the persistence (serial correlation) of growth was

evaluated firstly by calculating the transition probability matrice for the growth rates in the

two periods considered and secondly by explaining the growth rate in the latter period by the

one in the former period using regression analysis (OLS). Finally, the stochasticity of growth

processes is evaluated by analysing the relation of growth to the return on investment ratio

and to debt-to-assets ratio by means of the regression analysis (OLS) and cross-tabulation. Neili-

mo and Pekkanen (1996) found, analysing nine large company cases, that there is a relation-

ship between these variables. However, they observed that there were no relationship between

liquidity ratios and growth. In this study the return on investment ratio is calculated using net

profit after interest expenses as the nominator of the ratio because it shows the profitability

available for growth, better than the profit before interest. The financial statements in the ETLA

data base are adjusted according to the recommendations given by the Committee of Corpo-

rate Analysis (YTN) so that the ratios are reliable measures. Most of the statistical estimations

are made by the SAS statistical package. However, also Microsoft Excel was used, for exam-

ple, to calculate the Jarque-Bera test statistic and concentration measures.

4. THE EMPIRICAL RESULTS OF THE STUDY

Table 3 presents the distributions for the net sales in years 1987, 1991, and 1995 (panel 1) and

a set of statistical measures for these size distributions (panel 2). This table shows that the

distributions have remained, roughly speaking, similar over the years although they have moved

upwards for the sake of positive growth in the population. The relation of the standard devia-

tion to the mean (the coefficient of variation) is in each year about 2.3 and also the standard

deviation of the logarithmic net sales has been very stable over time. All these statistics indi-

cate that there may not have happened any large changes in concentration either. However,

the distributions are very skewed and they do not conform to the normality or lognormality at

all as shown by the Kolmogorov D test. Appendix 1 shows the cumulative net sales distribu-
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tions as well as the theoretical normal and lognormal distributions. The actual distribution is

clearly too skewed to conform even to the lognormal distribution. This appendix also shows

the estimates for the Pareto coefficient by size class. For the lower size classes as lower limits

the coefficients are in each year about 1.9 to 2.0. However, the estimates are not stable with

respect to size classes. This instability may indicate that there is not a Pareto tail in the size

distributions. Table 4 shows the values for the concentration measures which support the in-

terpretation above. The Gini coefficients, Hirschman-Herfindahl indices, and the concentra-

tion ratios are almost at identical levels for the years 1987, 1991, 1995. The concentration

ratios for each m (rank) are so close to each other that the Lorenz curves based on this data

were graphically almost identical. Thus, we conclude that the growth processes in large Finn-

TABLE 3. Size distributions (net sales) in the years 1987, 1991, and 1995 (in millions of FIM)

Panel 1. Frequencies

1987 1991 1995

Upper limit: Frequency Percent Frequency Percent Frequency Percent
200 34 21.7 16 10.2 13 8.3
400 40 25.5 36 22.9 40 25.5
800 38 24.2 42 26.8 36 22.9
1600 16 10.2 26 16.6 26 16.6
3200 10 6.4 12 7.6 15 9.6
6400 9 5.7 11 7.0 12 7.6
12800 7 4.5 9 5.7 9 5.7
25600 3 1.9 3 1.9 3 1.9
51200 0 0 2 1.3 3 1.9

TOTAL 157 100.0 157 100.0 157 100.0

Panel 2. Size statistics

Statistic: 1987 1991 1995

Net sales:
Mean 1576.668 2257.433 2539.883
Standard deviation 3591.188 5237.603 5842.115
Skewness 4.610 5.439 4.980
Kurtosis 24.394 37.524 30.764
Jarque-Bera statistic 4448.828 9985.079 6840.132
Probability level 0.0001 0.0001 0.0001

Logarithmic net sales:
Mean 6.324 6.688 6.773
Standard deviation 1.259 1.256 1.286
Skewness 0.944 0.977 0.932
Kurtosis 0.558 0.408 0.305
Jarque-Bera statistic 25.3549 26.0658 23.3375
Probability level 0.0001 0.0001 0.0001
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ish firms in 1987–1995 have operated in such a way that the concentration of net sales has

been extremely stable.

The results above may indicate that Gibrat’s law does not hold in its pure form in the

growth processes. Table 5 shows the Markov transition matrices for the periods 1987–1991

and 1991–1995. This table shows that the probability distributions by size class are not identi-

cal as assumed by Gibrat’s law. However, there are no large differences either. These distribu-

tions can be interpreted so that smaller firms may have a bit better probabilities for positive

growth than the larger ones and that the variations of growth in smaller firms are larger, too.

TABLE 4. Concentration of sales in 1987, 1991 and 1995

Panel 1. Concentration measures

Measure: 1987 1991 1995

Gini Coefficient 0.7266 0.7248 0.7317
Hirschman-Herfindahl Index 0.0392 0.0404 0.0399

Panel 2. Concentration ratios

Percent of net sales:

Rank in size Percent of 1987 1991 1995
order: frequency:

150 95.54 99.71 99.68 99.71
140 89.17 99.17 99.14 99.21
130 82.80 98.53 98.51 98.60
120 76.43 97.76 97.76 97.89
110 70.06 96.83 96.85 97.05
100 63.69 95.70 95.74 96.07
90 57.32 94.44 94.43 94.91
80 50.96 92.89 92.85 93.33
70 44.59 90.91 90.97 91.54
60 38.22 88.63 88.79 89.39
50 31.85 85.95 86.18 86.64
40 25.48 82.52 82.82 83.08
30 19.11 77.51 77.69 77.61
20 12.74 69.58 68.99 69.10
10 6.37 52.36 50.62 52.31
9 5.73 49.69 47.78 49.68
8 5.10 46.80 44.93 46.87
7 4.46 43.58 41.94 43.84
6 3.82 40.34 38.88 40.74
5 3.18 36.89 35.69 36.55
4 2.55 32.12 31.87 31.82
3 1.91 27.28 27.44 26.54
2 1.27 20.03 21.19 19.91
1 0.64 10.19 13.16 12.34
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Figure 1 shows the same information graphically. This figure includes the scatter diagrams be-

tween the logarithmic sales in successive periods. The distributions are almost homoskedastic.

In the latter period the growth has been slower so that the scatter diagram is not as vertical as

in the former period. However, there is more variation in growth rates in the latter period.

Table 6 presents statistics of the annual growth rates by size class. These statistics support the

conclusion above. There are no large differences in growth distribution between size classes.

However, in the largest size class the growth seems to be slower than in smaller classes. More-

over, the firms in the smallest size class tend to grow rather fast. These two phenomena con-

tradict with Gibrat’s law and may have made it possible for concentration to stay stable over

time.

Table 7 presents the results of the regression analysis for the successive logarithmic net

sales. This regression analysis conforms to the graphic analysis of Figure 1. The linear relation-

TABLE 5. Markov transition probability matrices

Panel 1. Transition from 1987 to 1991

Size class in 1991:

1 2 3 4 5 6 7 8 9 Total

1 44.1 50.0 5.9 100
2 2.5 47.5 45.0 5.0 100
3 52.6 44.8 2.6 100
4 12.5 43.8 37.5 6.2 100
5 60.0 40.0 100
6 55.6 44.4 100
7 71.4 28.6 100
8 33.3 66.7 100
9

Panel 2. Transition from 1991 to 1995

Size class in 1995:

1 2 3 4 5 6 7 8 9 Total

1 37.5 56.3 6.2 100
2 16.7 69.4 13.9 100
3 2.4 14.3 52.4 28.6 2.4 100
4 30.8 50.0 15.4 3.8 100
5 8.3 66.7 25.0 100
6 18.2 54.5 27.3 100
7 11.1 66.7 22.2 100
8 33.3 33.3 33.3 100
9 100 100

Size class
in 1987:

Size class
in 1991:
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Logarithmic sales in 1991

FIGURE 1. Scatter diagrams between logarithmic sales figures

Panel 1. Logarithmic sales in 1987 and 1991

Logarithmic sales
in 1991

Logarithmic sales in 1987

Panel 2. Logarithmic sales in 1991 and 1995

Logarithmic sales
in 1995
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TABLE 6. Distribution of annual growth rate in net sales by size class

Panel 1. Annual growth rate in 1987–1991

Size class in 1987: Mean Upper quartile Median Lower quartile

1 12.78 15.88 11.08 7.31
2 8.91 13.79 8.44 3.92
3 10.12 13.69 9.26 4.65
4 7.44 14.88 6.94 0.78
5 8.23 13.09 9.66 2.97
6 11.72 16.02 15.35 8.86
7 8.76 14.21 11.16 3.88
8 5.77 16.59 3.99 –3.27

Panel 2. Annual growth rate in 1991–1995

Size class in 1991: Mean Upper quartile Median Lower quartile

1 7.37 14.69 5.80 1.36
2 0.92 5.69 0.27 –3.19
3 2.96 8.56 2.09 –2.65
4 2.65 6.45 0.35 –5.56
5 2.50 8.02 1.94 –4.50
6 1.78 8.19 3.39 –4.92
7 3.15 9.98 3.30 –1.33
8 –2.09 8.63 8.06 –22.95
9 –0.25 1.35 –0.24 –1.85

ship between the logarithmic sizes is statistically very significant and the coefficients of multi-

ple determination exceed 90% in both periods. The estimates for the coeffient b in the re-

search periods are about 0.96 and 0.97, respectively. Thus they are slightly below unity which

contradicts with Gibrat’s law. Note that error terms in the first regression equation (panel 1) do

not conform to normality. This means that the probability levels for the T-statistic are incor-

rect. However, the test statistic is based on the sum of error terms so that, on the basis of the

central limit theorem, the distribution of the statistic may anyway be close to normality. Hence

the inference may provide us a good approximation. This same also holds for the OLS and

correlation results below. Note that in this case it could be possible also to use for example

the Dickey-Fuller distribution instead of t-distribution to improve the accury of the test.

The table also includes exemplary values for the four-year growth rate calculated for the

percentiles of net sales. These exemplary values show that the growth is not very sensitive to

size being, however, lower in larger firms. For example, the growth estimate for the period

1987–91 is about 41% for the 75% percentile (upper quartile) and about 49% for the 25%

percentile (lower quartile). Thus, we can conclude that there is a negative relationship be-

tween the growth and size but that the effect of size on growth is not very strong, except in
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very small and very large firms. The negative relationship also holds for the logarithmic growth

and size. The Pearson correlation coefficients between these variables for the research periods

were –14.2% (probability level 0.0755) and –8.2% (0.3063), respectively. These results may

give weak support to Kalecki’s model.

Table 8 presents the transition matrice for the growth rate from the period 1987–91 to the

period 1991–95. This table evidently shows that the firms which grew slowly in the former

period have better probabilities to grow fast in the latter period than the other firms. Thus

there is obviously some negative persistency in growth processes. This interpretation is sup-

ported by the regression analysis results presented in panel 2 of the same table. There is a

statistically significant negative relationship between the four-year growth rates. This result is

almost identical with the one based on the correlation between the logarithms of successive

growth rates. The Pearson coefficient of correlation for these logarithmic rates is –24.3% with

a probability level 0.0022. Thus, the results on the persistence of growth violate Gibrat’s law

TABLE 7. Regression results for logarithmic net sales (1991/1987 and 1995/1991)

Panel 1. Logarithmic sales in 1991 explained by logarthmic sales in 1987

Variable: Parameter estimate Standard error T-statistic Probability level

Intercept 0.6075 0.1385 4.387 0.0001
Logaritmic sales in 1987 0.9616 0.0215 44.765 0.0001

Adjusted R2 = 0.9277 (F-value 2003.900 with probability 0.0001)

Jarque-Bera statistic on residuals = 83.7987 with probability 0.0001

Exemplary values for four-year growth estimate for alternative net sales values in 1987:

Percentile 95 75 50 25 5
Net sales 7969 1035 452 223 126
Growth estimate 29.99 40.59 45.14 49.14 52.44

Panel 2. Logarithmic sales in 1995 explained by logarthmic sales in 1991

Variable: Parameter estimate Standard error T-statistic Probability level

Intercept 0.2593 0.1730 1.499 0.1360
Logaritmic sales in 1991 0.9739 0.0254 38.304 0.0001

Adjusted R2 = 0.9038 (F-value 1467.225 with probability 0.0001)

Jarque-Bera statistic on residuals = 4.8709 with probability 0.08756

Exemplary values for four-year growth estimate for alternative net sales values in 1991:

Percentile 95 75 50 25 5
Net sales 10599 1548 621 312 183
Growth estimate 1.75 6.99 9.57 11.56 13.12



4 4

L T A  1 / 9 9  •  E .  K .  L A I T I N E N

and may give some empirical support to Ijiri-Simon’s model (although no birth-and-death proc-

ess is allowed).

The final point to be considered in this study is the stochasticity of growth. This point will

be roughly evaluated by analysing the relationship of growth to logarithmic size, profitability

and solidity. Table 9 presents the results of the regression analysis in which the average annu-

al growth rate is explained by the logarithmic size, the return on investment ratio, and the

debt-to-assets ratio. There is no statistically significant linear dependence of growth to the ra-

tios since the coefficients of multiple determation are very low for both research periods. Ta-

ble 10 presents some statistics about the financial ratios by growth class. For the former period

(1987–91) the firms in the highest growth classes also show the highest profitability and solidi-

ty (lowest debt-to-assets) figures. However, in the latter period (1991–95) the results are re-

versed: fast growing firms tend to show lower profitability and solidity ratios than the others

(except the highest growth class with one observation). Thus, while supporting, on the one

hand, the stochasticity of growth, there seems, on the other hand, to be evidence of a depend-

ence of growth on some financial ratios. This dependence may hold only for a small part of

the population (a few of the largest firms) so that there is no statistically significant (linear)

dependence.

TABLE 8. Relationship between the growth rates in 1987–91 and 1991–95

Panel 1. Markov transition probability matrice for the growth rate 1987–91

Growth class in 1991–1995:

< 0 0–10 10–20 20–30 30–40 40–50 50– Total

< 0 33.33 38.10 19.05 9.52 100
0–10 34.43 39.34 16.39 8.20 1.64 100
10–20 45.16 40.32 11.29 1.61 1.61 100
20–30 62.50 37.50 100
30–40 66.67 33.33 100
40–50
50– 100.000 100

Panel 2. Regression model of growth rate 1991–1995

Variable: Parameter estimate Standard error T-statistic Probability level

Intercept 5.1830 1.1486 4.513 0.0001
Growth rate in
1987–1991 –0.2549– 0.0826 –3.085– 0.0024

Adjusted R2 = 0.0518 (F-value 9.517 with probability 0.0024)

Jarque-Bera statistic on residuals = 27.6918 with probability 0.0001

Growth class
in 1987–1991:



4 5

S T O C H A S T I C  G R O W T H  P R O C E S S E S  I N  L A R G E  F I N N I S H  C O M P A N I E S

5. SUMMARY OF THE RESULTS

The purpose of the study was to analyse the growth processes, as well as the relationship be-

tween size and growth, in large Finnish firms in 1987–1995. This time period is very interest-

ing because of radical changes in business cycles in that time. The study was concentrated on

growth as a stochastic process and largely rested on the test of Gibrat’s law of proportionate

effect, which tells that growth is a random process and independent of the size of the firm. If

Gibrat’s law holds, there is no optimum size for the firm with respect to growth. If the growth

of firms does not include the birth-and-death process, Gibrat’s law generates a lognormal dis-

tribution and the variance of logarithmic size will continuously increase in time (pure Gibrat’s

law). However, if there is a linear negative dependence between the logarithms of growth and

size, Gibrat’s law will generate a lognormal distribution but with a constant variance of loga-

rithmic size (Kalecki’s model). If the mathematical expectation of increments in the stochastic

transition matrix is negative, Gibrat’s law generates a Pareto distribution (Champernowne’s

model). The incorporation of the birth-and-death process in Gibrat’s law leads to a Yule distri-

bution when there is a constant rate of birth (Simon’s model) or serial correlation between

TABLE 9. Regression model of growth rate in 1987–1991 and 1991–1995

Panel 1. Annual growth rate in 1987–1991

Variable: Parameter estimate Standard error T-statistic Probability level

Intercept 21.0480 5.5959 –3.761 0.0002
Logaritmic sales in 1987 –1.3114 0.6392 –2.052 0.0419
Return on investment in 1987 –0.0166 0.0348 –0.478 0.6332
Debt-to-assets
ratio in 1987 –0.0407 0.0497 –0.819 0.4139

Adjusted R2 = 0.0098

Jarque-Bera statistic on residuals = 348.982 with probability 0.0001

Panel 2. Annual growth rate in 1991–1995

Variable: Parameter estimate Standard error T-statistic Probability level

Intercept 3.1234 6.0111 0.520 0.6041
Logaritmic sales in 1987 –0.5977– 0.6660 –0.897– 0.3709
Return on investment in 1991 0.0094 0.1614 0.058 0.9538
Debt-to-assets
ratio in 1991 0.0546 0.0548 0.997 0.3205

Adjusted R2 = –0.0065

Jarque-Bera statistic on residuals = 16.8138 with probability 0.0002
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periodic growth rates (Ijiri-Simon’s model). These properties of stochastic models gave an in-

teresting basis for the empirical study.

The data for the present study were taken from the ETLA data base including financial

statements from the 500 largest firms in Finland. However, it was required that the financial

statements for the firm to be chosen had to be available for the entire period of 1987–95. All

the firms that were involved in large mergers during the years 1987–1995 were excluded from

the sample. These restrictions meant that only 157 firms out of 500 were accepted for the

sample. The research period was split into two sub-periods, 1987–1991 and 1991–1995. The

size of the firm was measured by nominal net sales. The distribution of the sample firms among

industries was very diversified. Moreover, the data consisted of large and medium-sized Finn-

ish firms with wide variation in size. The size distributions and growth processes were ana-

lysed by a number of methods. The most important methods were Markov transition matrices

and regression analysis. Several measures of concentration were also applied (Hirschman-Her-

findahl index, Gini coefficient, and concentration ratios) to analyse changes in the size distri-

butions.

TABLE 10. Return on investment ratio and debt-to-assets ratio by growth class

Panel 1. Annual growth rate in 1987–1991

Growth class Return on investment Debt-to-assets
in 1987: ratio in 1987 ratio in 1987

Mean Median Mean Median Frequency

< 0 –0.22 2.56 61.83 63.37 21
0–10 2.99 1.59 66.65 68.93 61
10–20 –1.88 1.70 67.85 69.31 62
20–30 3.61 1.38 70.63 66.50 8
30–40 5.62 4.52 52.67 59.07 3
40–50 0
50– 5.56 5.56 51.23 51.23 2

Panel 2. Annual growth rate in 1991–1995

Growth class Return on investment Debt-to-assets
in 1987: ratio in 1987 ratio in 1987

Mean Median Mean Median Frequency

< 0 0.59 0.85 63.55 61.22 65
0–10 2.19 2.27 61.24 60.87 61
10–20 0.16 0.35 71.23 73.33 21
20–30 –2.56 0.40 73.46 73.66 8
30–40 –1.02 –1.02 73.79 73.79 1
40–50 3.00 3.00 70.92 70.92 1
50– 0
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In general, the empirical results showed that the growth processes in large Finnish firms

in 1987–1995 have operated in such a way that the concentration of net sales has been ex-

tremely stable. There are practically speaking no changes in concentration in the research pe-

riod in spite of the radical changes in business cycles. The growth processes were almost simi-

lar in both sub-periods except that the growth was slower in the latter period due to the reces-

sion. There were no large differences in growth distribution between size classes. However, in

the largest size class the growth seemed to be slower than in smaller classes. Moreover, the

firms in the smallest size class tend to grow rather fast. These two phenomena contradicted

with Gibrat’s law and may have made it possible for concentration to stay stable over time.

Consequently, there was observed a negative relationship between the growth and size but

that the effect of size on growth was not very strong, except in very small and very large firms

(compare with Kalecki’s assumption). There was also a statistically significant negative rela-

tionship between the four-year growth rates. Thus, the results on the persistence of growth

violated Gibrat’s law and gave support to Ijiri-Simon’s model. Finally, the results, on the one

hand supported the stochasticity of growth but, on the other hand, gave also evidence of a

dependence of growth on some financial ratios. This dependence may hold only for a small

part of the population (a few of the largest firms) so that there is no statistically significant

(linear) dependence. j

REFERENCES

BAILEY, D. AND BOYLE, S.E. (1971): The Optimal measure of Concentration. Journal of the American
Statistical Association. 66. 702–706.

CHAMPERNOWNE (1953): A Model of Income Distribution. Economic Journal.

CHURCHILL, N. and LEWIS, V. (1983): The Five Stages of Small Business Growth. Harvard Business
Review. 62. 3. 30–50.

EVANS, D.S. (1986): Gibrat’s Law, Firm Growth, and the Fortune 500. Working Paper. New York
University. New York. September.

EVANS, D.S. (1987): Test of Alternative Theories of Firm Growth. Journal of Political Economy. 95. 4.
657–674.

GARNSEY, E. (1996): A New Theory of the Growth of the Firm. The 41st ICSB World Conference.
Conference proceedings. 121–143.

GIBRAT, R. (1931): Les Inegalites Economiques. Sirey. Paris.

GREINER, L.E. (1972): Evolution and Revolution as Organizations Grow. Harvard Business Review. 50. 4.
37–46.

HAJBA, S. (1978): Yrityksen kasvu ja siihen vaikuttavat tekijät. Publications of the Turku School of
Economics. Series A-3.

HALL, B. (1987): The Relationship between Firm Size and Firm Growth in the U.S. Manufacturing Sector.
Journal of Industrial Economics. June.

HALL, M. and TIDEMANN, N. (1967): Measures of Concentration. Journal of the American Statistical
Association. 62. 162–168.

HART, P.E. and PRAIS, S.J. (1956): The Analysis of Business Concentration: A Statistical Approach. Journal
of the Royal Statistical Society. Series A. 119. 150–191.



4 8

L T A  1 / 9 9  •  E .  K .  L A I T I N E N

IJIRI, Y. and SIMON, H.A. (1977): Skew Distribution and the Size of Business Firms. North-Holland.
Amsterdam.

JARQUE, C.M. and BERA, A.K. (1980): Efficient Tests for Normality, Homoskedasticity and Serial
Dependence of Regression Residuals. Economics Letters. 6. 255–259.

JOVANOVIC, B. (1982): Selection and Evolution of Industry. Econometrica. 50. May. 649–670.

KALECKI, M. (1945): On the Gibrat Distribution. Econometrica. 13. January. 161–170.

KAZANJIAN, R. (1988): Relation of Dominant Problems to Stages of Growth in Technology-Based New
Ventures. Academy of Management Journal. 31. 2. 257–279.

KAZANJIAN, R. and DRAZIN, R. (1990): A Stage-contingent Model of Design and Growth for Technology-
based New Ventures. Journal of Business Venturing. 5. 3. 137–150.

KILPATRIC, R.W. (1967): The Choice among Alternative Measures of Industrial Concentration. Review of
Economics and Statistics. 2. 258–260.

KUMAR, M.S. (1985): Growth, Acquisition Activity and Firm Size: Evidence from the United Kingdom.
The Journal of Industrial Economics. 33. March. 3. 327–338.

LUCAS, R.E. (1967): Adjustment Costs and the Theory of Supply. Journal of Political Economics. 75. 4.
August. 321–334.

LUCAS, R.E. (1978): On the Size Distribution of Business Firms. Bell Journal of Economics. 9. Autumn.
508–523.

MARFELS, E. (1971): Absolute and Relative Measures of Concentration Reconsidered. Kyklos. 24. 753–
765.

NEILIMO, K. and PEKKANEN, S. (1996): Yrityksen kasvu ja taloudelliset toimintaedellytykset – miten eräät
suomalaiset suuryritykset ovat kasvaneet vuosina 1986–1993. Lappeenranta University of Technology.
Department of Business Administration. Research Report 5.

PENROSE, E. (1959): The Theory of the Growth of the Firm. Oxford University Press. Oxford.

SAPIENZA, H.J. , AUTIO, E. , ALMEIDA, J. , and KEIL, T. (1997): Dynamics of Growth of New, Technology-
based Firms: Toward a Resource-based Model. Submitted to the Entrepreneurship Division of the
Academy of Management for the Academy Meetings. August. 1997. Boston. USA.

SCOTT, M. and BRUCE, R (1987): Five Stages of Growth in Small Business. Long Range Planning. 20. 3.
45–52.

SIMON, H.A. (1955): On a Class of Skew Distribution Functions. Biometrica.

SIMON, H.A. and BONINI, C.P. (1958): The Size Distribution of Business Firms. American Economic
Review. September. 607–617.



4 9

S T O C H A S T I C  G R O W T H  P R O C E S S E S  I N  L A R G E  F I N N I S H  C O M P A N I E S

APPENDIX 1. Cumulative sales distributions

Panel 1. Sales distribution in 1987

Upper limit: Size Cumulative Lognormal Normal Pareto
class: distribution: distribution: distribution: coefficient:

200 1 2.08 20.76 35.07
400 2 6.61 39.59 37.16 1.90
800 3 15.56 61.28 41.44 1.86
1600 4 23.09 79.88 50.26 2.22
3200 5 31.63 91.75 67.44 3.01
6400 6 47.64 97.37 91.04 4.34
12800 7 72.72 99.36 99.91 5.78
25600 8 100.00 99.88 100.00
51200 9 99.98 100.00

10 100.00

Panel 2. Sales distribution in 1991

Upper limit: Size Cumulative Lognormal Normal Pareto
class: distribution: distribution: distribution: coefficient:

200 1 0.80 13.43 34.72
400 2 3.67 28.96 36.14
800 3 10.53 49.89 39.04 1.90
1600 4 18.49 70.85 45.01 1.97
3200 5 26.21 86.45 57.14 2.61
6400 6 40.65 95.08 78.55 3.61
12800 7 64.31 98.62 97.79 4.98
25600 8 78.81 99.71 100.00 12.32
51200 9 100.00 99.95 100.00

10 100.00

Panel 3. Sales distribution in 1995

Upper limit: Size Cumulative Lognormal Normal Pareto
class: distribution: distribution: distribution: coefficient:

200 1 0.57 12.58 34.44
400 2 3.52 27.17 35.71
800 3 8.85 47.26 38.29 1.84
1600 4 16.08 68.09 43.61 2.02
3200 5 24.61 84.35 54.50 2.54
6400 6 37.57 93.92 74.56 3.16
12800 7 59.26 98.15 96.05 3.98
25600 8 73.46 99.57 100.00 14.06
51200 9 100.00 99.92 100.00

10 100.00


